
EE 330

Lecture 27

Small-Signal Analysis

• Graphical Interpretation

• MOSFET Model Extensions

• Biasing (a precursor)

Two-Port Amplifier Modeling



Exam 1     Friday Sept 22

Exam 2     Friday Oct 20

Exam 3     Friday Nov. 17

Final         Monday Dec 11   12:00 – 2:00 p.m.

Fall 2023 Exam Schedule



Small Signal Model of MOSFET
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3-terminal device

Large Signal Model

MOSFET is usually operated in saturation region in linear applications 

where a small-signal model is needed so will develop the small-signal 

model in the saturation region
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Review from last lecture



Small Signal Model of MOSFET
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Small-Signal Model of MOSFET
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Small Signal Model of BJT
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Alternate equivalent small signal model

Small Signal BJT Model – alternate 

representation

Review from last lecture



Small-signal analysis example
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Derived for λ=0     (equivalently g0=0)
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Recall the derivation was very tedious and time consuming!

ss circuit

Review from last lecture



Small signal analysis example

VIN=VMsinωt

Consider again:

Derived for VAF=0    (equivalently  go=0)

Recall the derivation was very tedious and time consuming!
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Bi-Linear Relationship between 

i1 ,i2, v1, v2

i1
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v2

Small-Signal Model Representations

The good, the bad, and the unnecessary !!
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• Equivalent circuits often given for each representation

• All provide identical characterization

• Easy to move from any one to another
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• As VIN changes around Q-point, VIN induces changes in VGS . The 

operating point must remain on the load line!

• Small sinusoidal changes of VIN will be nearly symmetric around the 

VGSQ line

• This will cause nearly symmetric changes in both ID and VDS !

• Since  VSS is constant, change in VDS is equal to change in VOUT

/ = AV
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Saturation region

As VIN changes around Q-point,  due to changes VIN induces in VGS, 

the operating point must remain on the load line!
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• Linear signal swing region smaller than saturation region

• Modest nonlinear distortion provided saturation region operation maintained

• Symmetric swing about Q-point

• Signal swing can be maximized by judicious location of Q-point
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• Signal swing can be maximized by judicious location of Q-point

• Often selected to be at middle of load line in saturation region
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Small-Signal MOSFET  Model Extension

Existing 3-terminal small-signal model does not depend upon the bulk voltage !

Recall that changing the bulk voltage changes the electric field in the 

channel region and thus the threshold voltage! 
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VT
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~ -5V

Typical Effects of Bulk on Threshold Voltage for n-channel Device

1
-
20.4V  0.6V 

Bulk-Diffusion Generally Reverse Biased (VBS< 0 or at least less than 0.3V) for n-

channel   

Shift in threshold voltage with bulk voltage can be substantial

Often VBS=0

0T T BSV V V   = + − −
 

Recall:



Typical Effects of Bulk on Threshold Voltage for p-channel Device

1
-
20.4V  0.6V 

Bulk-Diffusion Generally Reverse Biased (VBS > 0 or at least greater than -0.3V) 

for n-channel   

VT

VT0

VBS

Same functional form as for n-channel devices but VT0 is now negative and 

the magnitude of VT still increases with the magnitude of the reverse bias

0T T BSV V V   = − + −
 

Recall:



4-terminal model extension 
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Small-Signal 4-terminal Model Extension
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Small-Signal 4-terminal Model Extension
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Small Signal MOSFET Equivalent Circuit
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An equivalent Circuit:

This contains absolutely no more information than the set of small-signal 

model equations



Small Signal 4-terminal MOSFET Model Summary
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Relative Magnitude of Small Signal MOS  Parameters
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Consider:

3 alternate equivalent expressions for gm

μCOX=100μA/V2 , λ=.01V-1,  γ = 0.4V0.5, VEBQ=1V, W/L=1,  VBSQ=0V
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In this example

This relationship is 

common

In many circuits, 

VBS=0 as well

• Often the go term can be neglected in the small signal model because it is so small

• Be careful about neglecting go prior to obtaining a final expression 

Consider, as an example:



Relative Magnitude of Small Signal BJT  Parameters
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Often the go term can be neglected in the small signal model because it is so small



Relative Magnitude of Small Signal Parameters

t

CQ
m

V

I
g =

t

CQ

βV

I
g =

AF

CQ

V

I
g o

β

βV

I

V

I

g

g

t

Q

t

Q

π

m =



















=

77
26mV100

200V

Vβ

V

V

I

Vβ

I

g

g

t

AF

AF

Q

t

Q

o

π =
•

=



















=

oπm ggg 

• Often the go term can be neglected in the small signal model because it is so small

• Be careful about neglecting go prior to obtaining a final expression 



Small Signal Model Simplifications 

for the MOSFET and BJT

Often simplifications of the small signal model are adequate for a given application

These simplifications will be discussed next

MOSFET BJT



Small Signal Model Simplifications
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Small Signal Model Simplifications
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Small Signal BJT Model Simplifications
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Simplification that is often adequate



Gains for MOSFET and BJT Circuits
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• Gains vary linearly with small signal parameter gm

For both circuits

• Power is often a key resource in the design of an integrated circuit

• In both circuits, power is proportional to ICQ , IDQ  (if VSS is fixed)

Large Signal Parameter Domain

            (If go is neglected)

Small Signal Parameter Domain

• Gains are identical in small-signal parameter domain !



How does gm vary with IDQ?  
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Varies with the square root of IDQ

Varies linearly with  IDQ

Doesn’t vary  with  IDQ



How does gm vary with IDQ?  

All of the above are true – but with qualification

gm is a function of more than one variable (IDQ) and how 

it varies depends upon how the remaining variables are 

constrained



Amplifier Biasing (precursor) 

B

E

C

VCC

Vin

R1

Vout

VEE

Q1

Not convenient to have multiple dc power supplies

VOUTQ very sensitive to VEE

B

E

C

VCC=12V

Vin

R1=2K

Vout

Q1

RB=500K

C1=1uF

Compare the small-signal equivalent circuits of these two structures

Single power supply

Additional resistor and capacitor

Compare the small-signal voltage gain of these two structures



Amplifier Biasing (precursor) 

B

E

C

VCC

Vin

R1

Vout

VEE

Q1

• Voltage sources VEE and VCC used for biasing

• Not convenient to have multiple dc power supplies

• VOUTQ very sensitive to VEE

➢ Biasing is used to obtain the desired operating point of a circuit

➢ Ideally the biasing circuit should not distract significantly from the basic 

operation of the circuit

R1

VIN

VOUT

VCC and VEE have disappeared !

1V mA g R−



Amplifier Biasing (precursor) 

B

E

C

VCC=12V

Vin

R1=2K

Vout

Q1

RB=500K

C1=1uF

Single power supply

Additional resistor and capacitor

R1

VIN

VOUT

RB

(RB affects input impedance but not voltage gain)

1V mA g R−

➢ Biasing is used to obtain the desired operating point of a circuit

➢ Ideally the biasing circuit should not distract significantly from the basic 

operation of the circuit

Thevenin Equivalent of VIN & RB is VIN



Amplifier Biasing (precursor) 

B

E

C

VCC

Vin

R1

Vout

VEE

Q1

Not convenient to have multiple dc power supplies

VOUTQ very sensitive to VEE

B

E

C

VCC=12V

Vin

R1=2K

Vout

Q1

RB=500K

C1=1uF

Single power supply

Additional resistor and capacitor

Biasing Circuits shown in purple



Amplifier Biasing (precursor)

B
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C

VCC

Vin

R1

Vout

VEE

Q1

B

E

C

VCC=12V

Vin

R1=2K

Vout

Q1

RB=500K

C1=1uF

Compare the small-signal equivalent circuits of these two structures

R1

VIN

VOUT

R1

VIN

VOUT

RB

Since Thevenin equivalent circuit in red circle is VIN, both circuits have same voltage gain

But the load placed on VIN is different

Method of characterizing the amplifiers is needed to assess impact of difference



Small-Signal Analysis

• Graphical Interpretation

• MOSFET Model Extensions

• Biasing (a precursor)

Two-Port Amplifier Modeling



Amplifier Characterization (an example)

Determine VOUTQ, AV, RIN

B

E

C

VCC=12V

Vin

R1=2K

Vout

Q1

RB=500K

C1=1uF

Determine VOUT and VOUT(t) if VIN=.002sin(400t)

In the following slides we will analyze this circuit

Assume β=100 

This example serves as a precursor to amplifier characterization



Amplifier Characterization (an example)

R1=2K

Q1

VOUT

VCC=12V

VIN(t)

RB=500K

C=1uF

Several different biasing circuits can be used 

Biasing 

Circuit

(biasing components:  C, RB, VCC in this case, all disappear in small-signal gain circuit)



R1=2K

Q1

VOUT

VCC=12V

VIN(t)

RB=500K

C=1uF

Biasing 

Circuit

Amplifier Characterization (an example)

Determine VOUTQ, AV, RIN



R1=2K

Q1

VOUT

VCC=12V

VIN(t)

RB=500K

C=1uF

Determine VOUTQ

β=100

R2=2K

Q1

VOUT

VCC=12V

RB1=500K

IB simplified

R2=2K VOUTQ

VCC=12V

RB1=500K

IB

0.6V

βIB

dc equivalent circuit

dc equivalent circuit

CQ BQ

12V-0.6V
I  = βI  =100 2.3mA

500K

 
= 

 

OUTQ CQ 1V  = 12V-I R  =12V - 2.3mA 2K 7.4V• =

Amplifier Characterization (an example)



R1=2K

Q1

VOUT

VCC=12V

VIN(t)

RB=500K

C=1uF

Determine the SS voltage gain  (AV) 

β=100

R1

VIN

VOUT

RB

ss equivalent circuit

Have seen this circuit before but will repeat for review purposes

R1

VOUT

VIN RB gmVBEVBE

iB

gπ

ss equivalent circuit

m  BE 1g ROUT= −V V

 BEIN=V V

V 1 mA R g= −

CQ 1
V

t

I R
A -

V


This basic amplifier structure is widely used and 

repeated analysis serves no useful purpose

177V

2.3mA 2K
A -

26mV

•
  −

Amplifier Characterization (an example)



R1=2K

Q1

VOUT

VCC=12V

VIN(t)

RB=500K

C=1uF

β=100

Amplifier Characterization (an example)

VIN

Linear One-Port 

Facing Input

RIN

• Here RIN is defined to be the impedance facing VIN

• Here any load is assumed to be absorbed into the 

one-port

• Later will consider how load is connected in 

defining RIN

Determine VOUTQ, AV, RIN



R1=2K

Q1

VOUT

VCC=12V

VIN(t)

RB=500K

C=1uF

Determine  RIN

β=100

R1

VIN

VOUT

RB

ss equivalent circuit

 IN
in

 IN

R =
V

i

R1

VOUT

VIN RB gmVBEVBE

iB

gπ

RIN

iIN

//inR BR r=

Usually RB>>rπ

/ /inR  = BR r r

1

CQ
in

t

I
R

βV

−

 
 =  

 
r

Amplifier Characterization (an example)

1

1087in

2.3mA
R

100 25mV

−

 
 =  

• 



Determine VOUT and VOUT(t) if VIN=.002sin(400t)

B

E

C

VCC=12V

Vin

R1=2K

Vout

Q1

RB=500K

C1=1uF

( )OUT OUTQ V  INV t  V +A V

7.4 .35 sin(400 )OUTV  - 0 •V t

OUT V  IN A=V V

177 .002sin(400 ) 0.354sin(400 )OUT  t t= − • = −V

Amplifier Characterization (an example)

This example identified several useful characteristics of amplifiers 

but a more formal method of characterization is needed!



Amplifier Characterization

• Two-Port Models

• Amplifier Parameters

Will assume amplifiers have two ports, one termed an input 

port and the  other termed an output port



Two-Port and Three-Port Networks

V1
V2

Two Port 

Network

In
p

u
t 

P
o

rt

O
u

tp
u

t P
o

rt

I1 I2

V1

Three-Port 

Network

P
o

rt
 1

I1

V2

P
o

rt
 2

I2

V3

P
o

rt
 3

I3

• Each port characterized by a pair of nodes (terminals)

• Can consider any number of ports

• Can be linear or nonlinear but most interest here will be in linear n-ports

• Often one node is common for all ports

• Ports are externally excited, terminated, or interconnected to form useful circuits

• Often useful for decomposing portions of a larger circuit into subcircuits to provide 

additional insight into operation 



Two-Port Representation of Amplifiers

R1=2K

Q1

VOUT

VCC=12V

VIN(t)

RB=500K

C=1uF
RL

R1

VIN

VOUT

RB

RL

R1

VOUT

VIN RB gmVBEVBE

iB

gπ RL

Two-Port Network

• Two-port model representation of amplifiers useful for insight into operation and analysis 

• Internal circuit structure of the two-port can be quite complicated but equivalent two-port 

model (when circuit is linear) is quite simple



Two-port representation of amplifiers

y11 y22 V2

y21V1

y12V2
V1

Amplifiers can be modeled as a linear two-port for small-signal operation

• Amplifier often unilateral  (signal propagates in only one direction: wlog y12=0)

• One terminal is often common

y11
y22 V2

y21V1

V1

In terms of y-parameters

Other parameter sets could be used



Two-port representation of amplifiers

RIN
V2

AVV1

V1

ROUT

• Thevenin equivalent output port often more standard

• RIN, AV, and ROUT often used to characterize the two-port of amplifiers

y11 y22 V2

y21V1

V1

Unilateral amplifier in terms of “amplifier” parameters

11

1
INR

y
= 21

22

V

y
A

y
= −

22

1
OUTR

y
=

Unilateral amplifiers:



Amplifier input impedance, output 

impedance and gain are usually of interest

Example 1:   Assume amplifier is  unilateral 

VIN

RS

Amplifier RL

VOUT

RIN V2

AVV1

V1

ROUT

VIN

RS

RL

VOUT

   
   
   

L IN
OUT V IN

L OUT S IN

R R
V = A V

R +R R +R

  
  
  

OUT L IN
VAMP V

IN L OUT S IN

V R R
A = = A

V R +R R +R

• Can get gain without reconsidering details about components internal to the Amplifier !!!

Why?

• Analysis more involved when not unilateral 



Amplifier input impedance, output 

impedance and gain are usually of interest

Example 2:   Assume amplifiers are unilateral 

• Can get gain without reconsidering details about components internal to the Amplifier !!!

Why?

VIN

RS

Amplifier 1 Amplifier 2 Amplifier 3 RL

VOUT

RIN1 V21

AV1V11

V11

ROUT1

VIN

RS

RIN2 V22

AV2V12

V12

ROUT2

RIN3 V23

AV3V13

V13

ROUT3

RL

VOUT

       
       
       

IN3L IN2 IN1
OUT V3 V2 V1 IN

L OUT3 OUT2 IN3 OUT1 IN2 S IN1

RR R R
V = A A A V

R +R R +R R +R R +R

       
       
       

OUT IN3L IN2 IN1
VAMP V3 V2 V1

IN L OUT3 OUT2 IN3 OUT1 IN2 S IN1

V RR R R
A = = A A A

V R +R R +R R +R R +R

• Analysis more involved when not unilateral 



Stay Safe and Stay Healthy !



End of Lecture 27
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