EE 330 Lecture 27

Small-Signal Analysis

- Graphical Interpretation
- MOSFET Model Extensions
- Biasing (a precursor)

Two-Port Amplifier Modeling

Fall 2023 Exam Schedule

Exam 1 Friday Sept 22

Exam 2 Friday Oct 20

Exam 3 Friday Nov. 17

Final Monday Dec 11 12:00 – 2:00 p.m.

Small Signal Model of MOSFET

Saturation

Large Signal Model

$$I_{\rm g} = 0$$

3-terminal device

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

$$V_{_{GS}} \ge V_{_{T}} \quad V_{_{DS}} \ge \ V_{_{GS}} - V_{_{T}}$$

Small Signal Model of MOSFET

Saturation Region Summary

Nonlinear model:

$$\begin{cases}
I_{G} = 0 \\
I_{D} = \mu C_{OX} \frac{W}{2L} (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS})
\end{cases}$$

Small-signal model:

$$\vec{i}_{G} = y_{11} v_{GS} + y_{12} v_{DS} = 0$$

$$\vec{i}_{D} = y_{21} v_{GS} + y_{22} v_{DSE}$$

$$y_{11} = 0$$

$$\mathbf{y}_{21} = \mathbf{g}_{m} \cong \mu \mathbf{C}_{ox} \frac{\mathbf{W}}{\mathbf{I}} (\mathbf{V}_{gsQ} - \mathbf{V}_{T}) \qquad \mathbf{y}_{22} = \mathbf{g}_{0} \cong \lambda \mathbf{I}_{DQ}$$

$$y_{12} = 0$$

$$\mathbf{y}_{22} = \mathbf{g}_{0} \cong \lambda \mathbf{I}_{DC}$$

Small-Signal Model of MOSFET

$$g_{m} = \mu C_{ox} \frac{W}{L} (V_{gsQ} - V_{T})$$

Alternate equivalent expressions for g_m :

$$I_{\text{\tiny DQ}} = \mu C_{\text{\tiny OX}} \frac{W}{2L} \big(V_{\text{\tiny GSQ}} - V_{\text{\tiny T}} \big)^2 \big(1 + \lambda V_{\text{\tiny DSQ}} \big) \cong \mu C_{\text{\tiny OX}} \frac{W}{2L} \big(V_{\text{\tiny GSQ}} - V_{\text{\tiny T}} \big)^2$$

$$g_{m} = \mu C_{ox} \frac{W}{L} (V_{GSQ} - V_{T})$$

$$g_{m} = \sqrt{2\mu C_{ox} \frac{W}{L}} \bullet \sqrt{I_{DQ}}$$

$$g_{m} = \frac{2I_{DQ}}{V_{GSQ} - V_{T}}$$

Small Signal Model of BJT

$$g_{\pi} = \frac{I_{CQ}}{\beta V_{+}}$$
 $g_{m} = \frac{I_{CQ}}{V_{+}}$ $g_{o} = \frac{I_{CQ}}{V_{AF}}$

$$oldsymbol{i}_{\scriptscriptstyle B} = g_{\scriptscriptstyle \pi} oldsymbol{V}_{\scriptscriptstyle BE} \ oldsymbol{i}_{\scriptscriptstyle C} = g_{\scriptscriptstyle m} oldsymbol{V}_{\scriptscriptstyle BE} + g_{\scriptscriptstyle O} oldsymbol{V}_{\scriptscriptstyle CE}$$

An equivalent circuit

y-parameter model using "g" parameter notation

Review from last lecture

Small Signal BJT Model – alternate

Alternate equivalent small signal model

Consider again: Review from last lecture

Small-signal analysis example

$$A_{v} = \frac{2I_{DQ}R}{\left[V_{SS} + V_{T}\right]}$$

Derived for $\lambda=0$ (equivalently $g_0=0$)

$$I_{D} = \mu C_{OX} \frac{W}{2L} (V_{GS} - V_{T})^{2}$$

Recall the derivation was very tedious and time consuming!

Consider again: Review from last lecture

Small signal analysis example

$$A_{VB} = -\frac{I_{CQ}R}{V_{t}}$$

Derived for $V_{AF}=0$ (equivalently $g_o=0$)

Recall the derivation was very tedious and time consuming!

Review from last lecture

Small-Signal Model Representations

The good, the bad, and the unnecessary !!

- Equivalent circuits often given for each representation
- All provide identical characterization
- Easy to move from any one to another

Consider Again

$$V_{OUT} = V_{DD} - I_{D}R$$

$$I_{D} = \frac{\mu C_{OX}W}{2L} (V_{IN} - V_{SS} - V_{T})^{2}$$

$$I_{_{DQ}} = \frac{\mu C_{_{OX}} W}{2L} \left(V_{_{SS}} \text{+} V_{_{T}}\right)^{^{2}}$$

Device Model (family of curves)
$$I_{D} = \frac{\mu C_{ox}W}{2L} (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS})$$

Load Line

$$V_{OUT} = V_{DD} - I_{D}R$$

$$I_{D} = \frac{\mu C_{OX}W}{2L} (V_{IN} - V_{SS} - V_{T})^{2}$$

$$I_{DQ} = \frac{\mu C_{OX} W}{2I} (V_{SS} + V_{T})^{2}$$

Device Model (family of curves)
$$I_D = \frac{\mu C_{ox}W}{2L} (V_{es} - V_{T})^2 (1 + \lambda V_{DS})$$

 V_{DD}

$$V_{OUT} = V_{DD} - I_{D}R$$

$$V_{SS} + V_{DS} = V_{DD} - I_{D}R$$

Load Line

$$V_{OUT} = V_{DD} - I_{D}R$$

$$I_{D} = \frac{\mu C_{OX}W}{2I} (V_{IN} - V_{SS} - V_{T})^{2}$$

$$I_{DQ} = \frac{\mu C_{OX} W}{2I} (V_{SS} + V_{T})^{2}$$

Graphical Analysis and Interpretation Device Model (family of curves) $I_D = \frac{\mu C_{ox}W}{2I} (V_{gs} - V_{T})^2 (1 + \lambda V_{DS})$ V_{GS6} M_1 $V_{IN}(t)$ V_{GS5} V_{GS4} $V_{GSO} = -V_{SS}$ V_{GS2} V_{GS1} $I_{DQ} \cong \frac{\mu C_{OX}W}{2I} (V_{SS} + V_{T})^{2}$ $V_{gso} = -V_{gs}$ Load Line Q-Point $\mathbf{V}_{ps} = \mathbf{V}_{pp} - \mathbf{V}_{ss}$ $V_{ss} + V_{ps} = V_{nn} - I_{n}R$ Must satisfy both equations $I_{D} = \frac{\mu C_{OX} W}{2I} (V_{IN} - V_{SS} - V_{T})^{2}$? all of the time!

 $V_{\text{OUT}} = V_{\text{DD}} - I_{\text{D}}R$

 $I_{D} = \frac{\mu C_{OX} W}{2I} (V_{IN} - V_{SS} - V_{T})^{2}$?

Device Model (family of curves)
$$I_{\scriptscriptstyle D} = \frac{\mu \; C_{\scriptscriptstyle OX} W}{2L} \big(V_{\scriptscriptstyle GS} - V_{\scriptscriptstyle T} \big)^{\scriptscriptstyle 2} \big(1 + \lambda V_{\scriptscriptstyle DS} \big)$$

 V_{GS6}

 V_{GS5}

$$I_{DQ} \cong \frac{\mu C_{OX}W}{2L} (V_{SS} + V_{T})^{2}$$

$$V_{gsQ} = -V_{gs}$$

Must satisfy both equations all of the time!

Graphical Analysis and Interpretation $\mathsf{V}_{\mathtt{DD}}$ Device Model (family of curves) $I_{D} = \frac{\mu C_{OX}W}{2I} (V_{IN} - V_{SS} - V_{T})^{2} (1 + \lambda V_{DS})$ V_{GS6} M_1 V_{GS5} $V_{IN}(t)$ V_{GS4} $V_{GSQ} = -V_{SS}$ V_{GS2} V_{GS1} Load Line Q-Point

- As V_{IN} changes around Q-point, V_{IN} induces changes in V_{GS} . The operating point must remain on the load line!
- Small sinusoidal changes of V_{IN} will be nearly symmetric around the V_{GSQ} line
- This will cause nearly symmetric changes in both I_D and V_{DS}!
- Since V_{SS} is constant, change in V_{DS} is equal to change in V_{OUT}

As V_{IN} changes around Q-point, due to changes V_{IN} induces in V_{GS} , the operating point must remain on the load line!

Graphical Analysis and Interpretation V_{DD} Device Model (family of curves) $I_{\text{\tiny DQ}} = \frac{\mu \ C_{\text{\tiny OX}} W}{2I} \big(V_{\text{\tiny GS}} - V_{\text{\tiny T}}\big)^2 \big(1 + \lambda V_{\text{\tiny DS}}\big)$ V_{GS6} M_1 V_{GS5} $V_{IN}(t)$ V_{GS4} $V_{GSO} = -V_{SS}$ V_{GS2} V_{GS1} Saturation region $I_{DQ} \cong \frac{\mu C_{OX}W}{2L} (V_{SS} + V_{T})^{2}$ Load Line Q-Point

- Linear signal swing region smaller than saturation region
- Modest nonlinear distortion provided saturation region operation maintained
- Symmetric swing about Q-point
- Signal swing can be maximized by judicious location of Q-point

Very limited signal swing with non-optimal Q-point location

Graphical Analysis and Interpretation V_{DD} Device Model (family of curves) $I_{\text{\tiny DQ}} = \frac{\mu \ C_{\text{\tiny OX}} W}{2I} \big(V_{\text{\tiny GS}} - V_{\text{\tiny T}}\big)^2 \big(1 + \lambda V_{\text{\tiny DS}}\big)$ V_{GS6} M_1 V_{GS5} $V_{IN}(t)$ V_{GS4} V_{GS3} $V_{GSQ} = -V_{SS}$ V_{GS2} V_{GS1} Saturation region Load Line Q-Point $I_{DQ} \cong \frac{\mu C_{OX}W}{2I} (V_{SS} + V_{T})^{2}$

- Signal swing can be maximized by judicious location of Q-point
- Often selected to be at middle of load line in saturation region

Small-Signal MOSFET Model Extension

Existing 3-terminal small-signal model does not depend upon the bulk voltage!

Recall that changing the bulk voltage changes the electric field in the channel region and thus the threshold voltage!

Recall: Typical Effects of Bulk on Threshold Voltage for n-channel Device

$$V_T = V_{T0} + \gamma \left[\sqrt{\phi - V_{BS}} - \sqrt{\phi} \right]$$

$$\gamma \cong 0.4 V^{\frac{-1}{2}} \qquad \phi \cong 0.6 V$$

Bulk-Diffusion Generally Reverse Biased (V_{BS} < 0 or at least less than 0.3V) for n-channel

Shift in threshold voltage with bulk voltage can be substantial Often $V_{\rm RS}$ =0

Recall: Typical Effects of Bulk on Threshold Voltage for p-channel Device

$$V_{T} = V_{T0} - \gamma \left[\sqrt{\phi + V_{BS}} - \sqrt{\phi} \right]$$

$$\gamma \cong 0.4V^{\frac{1}{2}} \qquad \phi \cong 0.6V$$

$$V_{BS}$$

Bulk-Diffusion Generally Reverse Biased ($V_{BS} > 0$ or at least greater than -0.3V) for n-channel

Same functional form as for n-channel devices but V_{T0} is now negative and the magnitude of V_T still increases with the magnitude of the reverse bias

Recall:

4-terminal model extension

$$\begin{split} & \mathbf{I}_{\mathsf{B}} = \mathbf{0} \\ & \mathbf{I}_{\mathsf{B}} = \mathbf{0} \\ & \mathbf{I}_{\mathsf{D}} = \begin{cases} 0 & \mathsf{V}_{\mathsf{GS}} \leq \mathsf{V}_{\mathsf{T}} \\ \mu \mathsf{C}_{\mathsf{Ox}} \frac{\mathsf{W}}{\mathsf{L}} \bigg(\mathsf{V}_{\mathsf{GS}} - \mathsf{V}_{\mathsf{T}} - \frac{\mathsf{V}_{\mathsf{DS}}}{2} \bigg) \mathsf{V}_{\mathsf{DS}} & \mathsf{V}_{\mathsf{GS}} \geq \mathsf{V}_{\mathsf{T}} & \mathsf{V}_{\mathsf{DS}} < \mathsf{V}_{\mathsf{GS}} - \mathsf{V}_{\mathsf{T}} \\ \mu \mathsf{C}_{\mathsf{Ox}} \frac{\mathsf{W}}{2\mathsf{L}} \big(\mathsf{V}_{\mathsf{GS}} - \mathsf{V}_{\mathsf{T}} \big)^2 \bullet \big(1 + \lambda \mathsf{V}_{\mathsf{DS}} \big) & \mathsf{V}_{\mathsf{GS}} \geq \mathsf{V}_{\mathsf{T}} & \mathsf{V}_{\mathsf{DS}} \geq \mathsf{V}_{\mathsf{GS}} - \mathsf{V}_{\mathsf{T}} \\ & \mathsf{V}_{\mathsf{T}} = \mathsf{V}_{\mathsf{T0}} + \gamma \Big(\sqrt{\phi - \mathsf{V}_{\mathsf{BS}}} - \sqrt{\phi} \Big) & \mathsf{V}_{\mathsf{CS}} > \mathsf{V}_{\mathsf{T}} & \mathsf{V}_{\mathsf{DS}} > \mathsf{V}_{\mathsf{CS}} > \mathsf{V}_{\mathsf{T}} \end{aligned}$$

Model Parameters : $\{\mu, C_{OX}, V_{T0}, \phi, \gamma, \lambda\}$

Design Parameters : {W,L} but only one degree of freedom W/L biasing or quiescent point

Small-Signal 4-terminal Model Extension

$$\begin{split} & I_{_{B}} \! = \! 0 \\ & I_{_{B}} \! = \! 0 \\ & I_{_{D}} \! = \! \begin{cases} 0 & V_{_{GS}} \! \leq \! V_{_{T}} \\ \mu C_{_{OX}} \frac{W}{L} \bigg(V_{_{GS}} \! - \! V_{_{T}} \! - \! \frac{V_{_{DS}}}{2} \bigg) V_{_{DS}} & V_{_{GS}} \! \geq \! V_{_{T}} & V_{_{DS}} \! < V_{_{GS}} \! - \! V_{_{T}} \\ \mu C_{_{OX}} \frac{W}{2L} \bigg(V_{_{GS}} \! - \! V_{_{T}} \bigg)^{2} \bullet \! \Big(1 \! + \! \lambda V_{_{DS}} \Big) & V_{_{GS}} \! \geq \! V_{_{T}} & V_{_{DS}} \! \geq \! V_{_{GS}} \! - \! V_{_{T}} \\ V_{_{T}} \! = \! V_{_{T0}} \! + \! \gamma \! \Big(\! \sqrt{\phi \! - \! V_{_{BS}}} \! - \! \sqrt{\phi} \Big) & V_{_{SS}} \! \geq \! V_{_{T}} & V_{_{DS}} \! \geq \! V_{_{GS}} \! - \! V_{_{T}} \\ V_{_{T1}} \! = \! \frac{\partial I_{_{G}}}{\partial V_{_{GS}} \big|_{V_{_{C}V_{_{G}}}}} \! = \! 0 & y_{_{12}} \! = \! \frac{\partial I_{_{G}}}{\partial V_{_{DS}} \big|_{V_{_{C}V_{_{G}}}}} \! = \! 0 & y_{_{13}} \! = \! \frac{\partial I_{_{G}}}{\partial V_{_{GS}} \big|_{V_{_{C}V_{_{G}}}}} \! = \! 0 \\ y_{_{21}} \! = \! \frac{\partial I_{_{D}}}{\partial V_{_{GS}} \big|_{V_{_{C}V_{_{G}}}}} \! = \! g_{_{m}} & y_{_{22}} \! = \! \frac{\partial I_{_{B}}}{\partial V_{_{DS}} \big|_{V_{_{C}V_{_{G}}}}} \! = \! g_{_{m}} & y_{_{23}} \! = \! \frac{\partial I_{_{B}}}{\partial V_{_{GS}} \big|_{V_{_{C}V_{_{G}}}}} \! = \! 0 \\ y_{_{31}} \! = \! \frac{\partial I_{_{B}}}{\partial V_{_{GS}} \big|_{V_{_{C}V_{_{G}}}}} \! = \! 0 & y_{_{32}} \! = \! \frac{\partial I_{_{B}}}{\partial V_{_{DS}} \big|_{V_{_{C}V_{_{G}}}}} \! = \! 0 \\ \end{array}$$

Small-Signal 4-terminal Model Extension

$$I_{D} = \mu C_{OX} \frac{W}{2L} (V_{GS} - V_{T})^{2} \bullet (1 + \lambda V_{DS})$$

$$V_{EB} = V_{GS} - V_{T}$$

$$V_{T} = V_{T0} + \gamma \left(\sqrt{\phi - V_{BS}} - \sqrt{\phi} \right)$$
Definition:
$$V_{EBQ} = V_{GSQ} - V_{TQ}$$

$$g_{_{m}} = \frac{\partial I_{_{D}}}{\partial V_{_{GS}}}\bigg|_{_{\vec{V} = \vec{V}_{_{Q}}}} = \mu C_{_{OX}} \frac{W}{2L} 2 \left(V_{_{GS}} - V_{_{T}}\right)^{1} \bullet \left(1 + \lambda V_{_{DS}}\right)\bigg|_{_{\vec{V} = \vec{V}_{_{Q}}}} \cong \mu C_{_{OX}} \frac{W}{L} V_{_{EBQ}}$$
Same as 3-term

$$g_{o} = \frac{\partial I_{D}}{\partial V_{DS}}\bigg|_{\vec{V} = \vec{V}_{Q}} = \mu C_{ox} \frac{W}{2L} 2(V_{GS} - V_{T})^{2} \bullet \lambda \bigg|_{\vec{V} = \vec{V}_{Q}} \cong \lambda I_{DQ}$$
Same as 3-term

$$g_{mb} = \frac{\partial I_{D}}{\partial V_{BS}}\bigg|_{\vec{V} = \vec{V}_{Q}} = \mu C_{ox} \frac{W}{2L} 2(V_{GS} - V_{T})^{1} \bullet \left(-\frac{\partial V_{T}}{\partial V_{BS}}\right) \bullet (1 + \lambda V_{DS})\bigg|_{\vec{V} = \vec{V}_{Q}}$$

$$g_{\scriptscriptstyle mb} = \frac{\partial I_{\scriptscriptstyle D}}{\partial V_{\scriptscriptstyle BS}}\bigg|_{_{\vec{V} = \vec{V}_{\scriptscriptstyle O}}} \cong \mu C_{\scriptscriptstyle OX} \frac{W}{L} V_{\scriptscriptstyle EBQ} \bullet \frac{\partial V_{\scriptscriptstyle T}}{\partial V_{\scriptscriptstyle BS}}\bigg|_{_{\vec{V} = \vec{V}_{\scriptscriptstyle O}}} = \left(\mu C_{\scriptscriptstyle OX} \frac{W}{L} V_{\scriptscriptstyle EBQ}\right) (-1) \gamma \frac{1}{2} (\phi - V_{\scriptscriptstyle BS})^{-\frac{1}{2}}\bigg|_{_{\vec{V} = \vec{V}_{\scriptscriptstyle O}}} (-1)$$

$$g_{\scriptscriptstyle mb}\cong g_{\scriptscriptstyle m}\,rac{\gamma}{2\sqrt{\phi} ext{-}V_{\scriptscriptstyle
m BSQ}}$$

Small Signal MOSFET Equivalent Circuit

An equivalent Circuit:

This contains absolutely no more information than the set of small-signal model equations

Small Signal 4-terminal MOSFET Model Summary

$$i_g = 0$$

$$i_b = 0$$

$$i_d = g_m v_{gs} + g_{mb} v_{bs} + g_o v_{ds}$$

$$g_{m} = \frac{\mu C_{ox} W}{L} V_{EBQ}$$

$$g_{o} = \lambda I_{DQ}$$

$$g_{mb} = g_{m} \left(\frac{\gamma}{2\sqrt{\phi - V_{PSQ}}} \right)$$

Relative Magnitude of Small Signal MOS Parameters

Consider:

$$i_{d} = g_{m} v_{gs} + g_{mb} v_{bs} + g_{o} v_{ds}$$

3 alternate equivalent expressions for g_m

$$g_{_{m}} = \frac{\mu C_{_{OX}} W}{I} V_{_{EBQ}} \qquad g_{_{m}} = \sqrt{\frac{2\mu C_{_{OX}} W}{L}} \sqrt{I_{_{DQ}}} \qquad \qquad g_{_{m}} = \frac{2I_{_{DQ}}}{V_{_{EBQ}}}$$

Consider, as an example:

$$\mu C_{OX} = 100 \mu A/V^2$$
, $\lambda = .01 V^{-1}$, $\gamma = 0.4 V^{0.5}$, $V_{EBQ} = 1 V$, $W/L = 1$, $V_{BSQ} = 0 V$

$$\begin{split} I_{_{DQ}} &\cong \frac{\mu C_{_{OX}} W}{2L} V_{_{EBQ}}^2 = \frac{10^4 \mathcal{W}}{2 \mathcal{V}} (1V)^2 = 5E-5 \\ g_{_{m}} &< g_{_{mb}} V_{_{EBQ}} = 1E-4 \\ g_{_{o}} &= \lambda I_{_{DQ}} = 5E-7 \\ g_{_{mb}} &= g_{_{m}} \left(\frac{\gamma}{2 \sqrt{\phi - V_{_{BSQ}}}}\right) = .26 g_{_{m}} \end{split}$$
In this example
$$g_{_{mb}} < g_{_{mb}} < g_{_{m}}, g_{_{mb}}$$

$$g_{_{mb}} < g_{_{mb}} < g_{_{mb}} < g_{_{mb}}$$
This relationship is common
$$In \text{ many circuits,} \\ v_{_{BS}} = 0 \text{ as well} \end{aligned}$$

- Often the g_o term can be neglected in the small signal model because it is so small
- Be careful about neglecting g_o prior to obtaining a final expression

Relative Magnitude of Small Signal BJT Parameters

$$g_{m} = \frac{I_{CQ}}{V_{t}}$$

$$g_{m} = \frac{I_{CQ}}{V_{t}}$$
 $g_{\pi} = \frac{I_{CQ}}{\beta V_{t}}$ $g_{o} \cong \frac{I_{CQ}}{V_{AF}}$

$$g_o \cong \frac{I_{CQ}}{V_{AF}}$$

$$\frac{g_m}{g_\pi} = \frac{\begin{bmatrix} I_Q \\ V_t \end{bmatrix}}{\begin{bmatrix} I_Q \\ \overline{\beta V_t} \end{bmatrix}}$$

$$\frac{g_{\pi}}{g_{o}} = \frac{\left[\frac{I_{Q}}{\beta V_{t}}\right]}{\left[\frac{I_{Q}}{V_{AF}}\right]}$$

$$g_{m} >> g_{\pi} >> g_{o}$$

Relative Magnitude of Small Signal Parameters

$$g_{m} = \frac{I_{CQ}}{V_{t}} \qquad g_{\pi} = \frac{I_{CQ}}{\beta V_{t}} \qquad g_{o} \cong \frac{I_{CQ}}{V_{AF}}$$

$$\frac{g_{m}}{g_{\pi}} = \frac{\left[\frac{I_{Q}}{V_{t}}\right]}{\left[\frac{I_{Q}}{\beta V_{t}}\right]} = \beta$$

$$\frac{g_{\pi}}{g_{o}} = \frac{\left[\frac{I_{Q}}{\beta V_{t}}\right]}{\left[\frac{I_{Q}}{V_{AF}}\right]} = \frac{V_{AF}}{\beta V_{t}} \approx \frac{200V}{100 \cdot 26mV} = 77$$

$$g_{m} >> g_{\pi} >> g_{o}$$

- Often the g_o term can be neglected in the small signal model because it is so small
- Be careful about neglecting g_o prior to obtaining a final expression

Small Signal Model Simplifications for the MOSFET and BJT

Often simplifications of the small signal model are adequate for a given application

These simplifications will be discussed next

Small Signal Model Simplifications

Simplification that is often adequate

Small Signal Model Simplifications

Small Signal BJT Model Simplifications

Simplification that is often adequate

Gains for MOSFET and BJT Circuits

BJT

MOSFET

$$A_{VB} = -\frac{I_{CQ}R_{1}}{V_{L}} \leftarrow$$

Large Signal Parameter Domain (If g_o is neglected)

$$\rightarrow A_{\text{VM}} = \frac{2I_{\text{DQ}}R}{\left[V_{\text{SS}} + V_{\text{T}}\right]}$$

Small Signal Parameter Domain

$$A_{v} = -g_{m}R$$

- Gains are identical in small-signal parameter domain!
- Gains vary linearly with small signal parameter g_m
- Power is often a key resource in the design of an integrated circuit
- In both circuits, power is proportional to I_{CQ}, I_{DQ} (if V_{SS} is fixed)

How does g_m vary with I_{DO} ?

$$g_{m} = \sqrt{\frac{2\mu C_{OX}W}{L}} \sqrt{I_{DQ}}$$

Varies with the square root of I_{DO}

$$g_{m} = \frac{2I_{DQ}}{V_{GSQ} - V_{T}} = \frac{2I_{DQ}}{V_{EBQ}}$$

Varies linearly with I_{DO}

$$g_{m} = \frac{\mu C_{OX} W}{L} (V_{GSQ} - V_{T})$$

Doesn't vary with I_{DO}

How does g_m vary with I_{DQ} ?

All of the above are true – but with qualification

 g_m is a function of more than one variable (I_{DQ}) and how it varies depends upon how the remaining variables are constrained

Not convenient to have multiple dc power supplies V_{OUTQ} very sensitive to V_{EE}

Single power supply Additional resistor and capacitor

Compare the small-signal equivalent circuits of these two structures

Compare the small-signal voltage gain of these two structures

- Voltage sources V_{EE} and V_{CC} used for biasing
- Not convenient to have multiple dc power supplies
- V_{OUTQ} very sensitive to V_{EE}
- Biasing is used to obtain the desired operating point of a circuit
- Ideally the biasing circuit should not distract significantly from the basic operation of the circuit

Single power supply Additional resistor and capacitor Thevenin Equivalent of $v_{\rm IN}$ & R_B is $v_{\rm IN}$

- Biasing is used to obtain the desired operating point of a circuit
- Ideally the biasing circuit should not distract significantly from the basic operation of the circuit

Biasing Circuits shown in purple

Not convenient to have multiple dc power supplies V_{OUTQ} very sensitive to V_{EE}

Single power supply Additional resistor and capacitor

Compare the small-signal equivalent circuits of these two structures

Since Thevenin equivalent circuit in red circle is V_{iN} , both circuits have same voltage gain

But the load placed on V_{IN} is different

Method of characterizing the amplifiers is needed to assess impact of difference

Small-Signal Analysis

- Graphical Interpretation
- MOSFET Model Extensions
- Biasing (a precursor)

This example serves as a precursor to amplifier characterization

Determine $V_{\rm OUTQ}$, $A_{\rm V}$, $R_{\rm IN}$ Assume β =100 Determine $v_{\rm OUT}$ and $v_{\rm OUT}$ (t) if $v_{\rm IN}$ =.002sin(400t)

In the following slides we will analyze this circuit

(biasing components: C, R_B , V_{CC} in this case, all disappear in small-signal gain circuit)

Several different biasing circuits can be used

dc equivalent circuit

dc equivalent circuit

$$I_{CQ} = \beta I_{BQ} = 100 \left(\frac{12V - 0.6V}{500K} \right) = 2.3mA$$

$$V_{OUTQ} = 12V-I_{CQ}R_1 = 12V - 2.3mA \cdot 2K = 7.4V$$

Determine the SS voltage gain (A_{V})

ss equivalent circuit

ss equivalent circuit

$$v_{OUT} = -g_{m}v_{BE}R_{1}$$

$$v_{IN} = v_{BE}$$

$$A_{V} = -R_{1}g_{m}$$

$$A_{V} \cong -\frac{I_{CQ}R_{1}}{V_{t}}$$

$$A_{V} \cong -\frac{2.3mA \cdot 2K}{26mV} \cong -177$$

This basic amplifier structure is widely used and repeated analysis serves no useful purpose

Determine V_{OUTQ}, A_V, R_{IN}

- Here R_{IN} is defined to be the impedance facing V_{IN}
- Here any load is assumed to be absorbed into the one-port
- Later will consider how load is connected in defining R_{IN}

Determine R_{IN}

Usually R_B>>r_π

$$R_{in} = R_B / / r_\pi \cong r_\pi$$

$$R_{in} \cong r_\pi = \left(\frac{I_{CQ}}{\beta V_{t_1}}\right)^{-1}$$

$$R_{in} \cong \left(\frac{2.3 \text{mA}}{100 \cdot 25 \text{mV}}\right)^{-1} = 1087 \Omega$$

 $R_{in} = R_B // r_{\pi}$

Determine v_{OUT} and v_{OUT} (t) if v_{IN} =.002sin(400t)

This example identified several useful characteristics of amplifiers but a more formal method of characterization is needed!

Amplifier Characterization

- Two-Port Models
- Amplifier Parameters

Will assume amplifiers have two ports, one termed an input port and the other termed an output port

Two-Port and Three-Port Networks

- Each port characterized by a pair of nodes (terminals)
- Can consider any number of ports
- Can be linear or nonlinear but most interest here will be in linear n-ports
- Often one node is common for all ports
- Ports are externally excited, terminated, or interconnected to form useful circuits
- Often useful for decomposing portions of a larger circuit into subcircuits to provide additional insight into operation

Two-Port Representation of Amplifiers

- Two-port model representation of amplifiers useful for insight into operation and analysis
- Internal circuit structure of the two-port can be quite complicated but equivalent two-port model (when circuit is linear) is quite simple

Two-port representation of amplifiers

Amplifiers can be modeled as a linear two-port for small-signal operation

In terms of y-parameters
Other parameter sets could be used

- Amplifier often unilateral (signal propagates in only one direction: wlog y₁₂=0)
- One terminal is often common

Two-port representation of amplifiers

Unilateral amplifiers:

- Thevenin equivalent output port often more standard
- R_{IN}, A_V, and R_{OUT} often used to characterize the two-port of amplifiers

Unilateral amplifier in terms of "amplifier" parameters

$$R_{IN} = \frac{1}{y_{11}}$$
 $A_{V} = -\frac{y_{21}}{y_{22}}$ $R_{OUT} = \frac{1}{y_{22}}$

Amplifier input impedance, output impedance and gain are usually of interest Why?

Example 1: Assume amplifier is unilateral

- Can get gain without reconsidering details about components internal to the Amplifier !!!
 - Analysis more involved when not unilateral

Amplifier input impedance, output impedance and gain are usually of interest Why?

Example 2: Assume amplifiers are unilateral

- Can get gain without reconsidering details about components internal to the Amplifier !!!
- Analysis more involved when not unilateral

Stay Safe and Stay Healthy!

End of Lecture 27