EE 330 Lecture 27

Small-Signal Analysis

- Graphical Interpretation
- MOSFET Model Extensions
- Biasing (a precursor)

Two-Port Amplifier Modeling

Fall 2023 Exam Schedule

- Exam 1 Friday Sept 22
- Exam 2 Friday Oct 20
- Exam 3 Friday Nov. 17

Final Monday Dec 11 12:00 – 2:00 p.m.

Review from last lecture

 $_{\tiny \textrm{G}}=0$

Small Signal Model of MOSFET

Large Signal Model

MOSFET is usually operated in saturation region in linear applications where a small-signal model is needed so will develop the small-signal model in the saturation region

Small Signal Model of MOSFET

Saturation Region Summary

Nonlinear model:

I Model of MOSFET
\nRegion Summary
\n
$$
\int_{I_o} I_o = 0
$$
\n
$$
I_o = \mu C_{ox} \frac{W}{2L} (V_{cs} - V_{\tau})^2 (1 + \lambda V_{DS})
$$
\n
$$
\int_{I_o} \vec{t}_o = y_{11} v_{cs} + y_{12} v_{DS} = 0
$$
\n
$$
\vec{t}_o = y_{21} v_{cs} + y_{22} v_{DS} = 0
$$
\n
$$
V_{12} = 0
$$
\n
$$
V_{22} = g_0 \approx \lambda I_{DQ}
$$

Small-signal model:

$$
\left[\boldsymbol{i}_{\scriptscriptstyle G} = y_{\scriptscriptstyle 11}\boldsymbol{v}_{\scriptscriptstyle GS} + y_{\scriptscriptstyle 12}\boldsymbol{v}_{\scriptscriptstyle DS} = 0\right]
$$

$$
\boldsymbol{i}_{\scriptscriptstyle D} = y_{\scriptscriptstyle 21}\boldsymbol{v}_{\scriptscriptstyle GS} + y_{\scriptscriptstyle 22}\boldsymbol{v}_{\scriptscriptstyle DES}
$$

 ${\bf y}_{11} = 0$ ${\bf y}_{12} = 0$ ${\sf y}_{{}_{21}}={}_{\cal{S}}_{_{m}}\cong\,{\sf nC}_{_{\sf OX}}\frac{{\sf W}}{{\sf t}}({\sf V}_{_{\sf GSQ}}-{\sf V}_{_{\sf T}})\qquad\quad {\sf Y}_{{}_{22}}={\cal{S}}_{_{0}}\cong\left.{\cal X}\right|_{{}_{\sf DQ}}$ $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $= g_{_{m}} \cong \mu G_{_{\rm OX}} \frac{1}{1 -} (\mathsf{V}_{_{\rm CSQ}} - \mathsf{V}_{_{\rm T}})$ **y** $_{22} = \mathsf{g}_{_{0}}$

Small-Signal Model of MOSFET Review from last lecture

Alternate equivalent expressions for gm:

$$
I_{_{\text{DQ}}} \text{=}\mu C_{_{\text{OX}}} \frac{W}{2L}\big(V_{_{\text{GSQ}}} - V_{_{\text{T}}}\big)^2 \big(1 + \lambda V_{_{\text{DSQ}}}\big) \cong \mu C_{_{\text{OX}}} \frac{W}{2L}\big(V_{_{\text{GSQ}}} - V_{_{\text{T}}}\big)^2
$$

$$
g_{\scriptscriptstyle m} = \mu C_{\scriptscriptstyle OX} \frac{W}{L} (V_{\scriptscriptstyle \text{GSO}} - V_{\scriptscriptstyle \text{T}})
$$

$$
g_{\scriptscriptstyle m} = \sqrt{2 \mu C_{\scriptscriptstyle OX} \frac{W}{L}} \bullet \sqrt{I_{\scriptscriptstyle \text{DQ}}}
$$

$$
g_{\scriptscriptstyle m} = \frac{2I_{\scriptscriptstyle DQ}}{V_{\scriptscriptstyle GSQ} - V_{\scriptscriptstyle T}}
$$

Review from last lecture

Small Signal Model of BJT

Alternate equivalent small signal model

ss circuit

Review from last lecture

Small-Signal Model Representations

The good, the bad, and the **unnecessary** !!

- Equivalent circuits often given for each representation
- All provide identical characterization
- Easy to move from any one to another

Graphical Analysis and Interpretation

Consider Again

$$
V_{\text{out}} = V_{\text{dd}} - I_{\text{b}}R
$$

$$
I_{\text{b}} = \frac{\mu C_{\text{ox}} W}{2L} (V_{\text{in}} - V_{\text{ss}} - V_{\text{t}})^{2}
$$

$$
I_{_{\text{DQ}}}=\frac{\mu C_{_{\text{OX}}}W}{2L}\big(V_{_{\text{SS}}}+V_{_{\text{T}}}\big)^2
$$

- As V_{IN} changes around Q-point, V_{IN} induces changes in V_{GS} . The operating point must remain on the load line!
- Small sinusoidal changes of V_{IN} will be nearly symmetric around the V_{GSO} line
- This will cause nearly symmetric changes in both I_D and V_{DS} !
- Since V_{SS} is constant, change in V_{DS} is equal to change in V_{OUT}

As V_{IN} changes around Q-point, due to changes V_{IN} induces in V_{GS} , the operating point must remain on the load line!

- Linear signal swing region smaller than saturation region
- Modest nonlinear distortion provided saturation region operation maintained
- Symmetric swing about Q-point
-

Very limited signal swing with non-optimal Q-point location

- Signal swing can be maximized by judicious location of Q-point
- Often selected to be at middle of load line in saturation region

Small-Signal MOSFET Model Extension

Existing 3-terminal small-signal model does not depend upon the bulk voltage !

Recall that changing the bulk voltage changes the electric field in the channel region and thus the threshold voltage!

Typical Effects of Bulk on Threshold Voltage for n-channel Device Recall:

Bulk-Diffusion Generally Reverse Biased (V_{BS} < 0 or at least less than 0.3V) for nchannel

Shift in threshold voltage with bulk voltage can be substantial

Recall: Typical Effects of Bulk on Threshold Voltage for p-channel Device

Bulk-Diffusion Generally Reverse Biased (V_{BS} > 0 or at least greater than -0.3V) for n-channel

Same functional form as for n-channel devices but V_{T0} is now negative and the magnitude of V_T still increases with the magnitude of the reverse bias

4-terminal model extension Recall:

Design Parameters : {W,L} but only one degree of freedom W/L biasing or quiescent point

Small-Signal 4-terminal Model Extension
\n
$$
I_s = 0
$$
\n
$$
I_s = 0
$$
\n
$$
I_s = 0
$$
\n
$$
V_{cs} \le V_{\tau}
$$
\n
$$
V_{cs} \le V_{\tau}
$$
\n
$$
V_{cs} \le V_{\tau}
$$
\n
$$
V_{cs} \ge V_{\tau}
$$
\n
$$
V_{\tau} = V_{\tau 0} + \gamma \left(\sqrt{\phi} - V_{\tau s} - \sqrt{\phi}\right)
$$
\n
$$
V_{\tau} = V_{\tau 0} + \gamma \left(\sqrt{\phi} - V_{\tau s} - \sqrt{\phi}\right)
$$
\n
$$
V_{\tau s} = \frac{\partial I_s}{\partial V_{\tau s}}\Big|_{V = V_0} = 0 \quad V_{\tau 2} = \frac{\partial I_s}{\partial V_{\tau s}}\Big|_{V = V_0} = 0 \quad V_{\tau 3} = \frac{\partial I_s}{\partial V_{\tau s}}\Big|_{V = V_0} = 0
$$
\n
$$
V_{\tau 1} = \frac{\partial I_s}{\partial V_{\tau s}}\Big|_{V = V_0} = g_{\tau}
$$
\n
$$
V_{\tau 2} = \frac{\partial I_s}{\partial V_{\tau s}}\Big|_{V = V_0} = g_{\tau}
$$
\n
$$
V_{\tau 3} = \frac{\partial I_s}{\partial V_{\tau s}}\Big|_{V = V_0} = 0 \quad V_{\tau 3} = \frac{\partial I_s}{\partial V_{\tau s}}\Big|_{V = V_0} = g_{\tau}
$$
\n
$$
V_{\tau 4} = \frac{\partial I_s}{\partial V_{\tau s}}\Big|_{V = V_0} = 0 \quad V_{\tau 3} = \frac{\partial I_s}{\partial V_{\tau s}}\Big|_{V = V_0} = 0
$$

Small-Signal 4-terminal Model Extension **^W ^I** ⁼ **μ C** [−] • ¹ ⁺ () () **D S 2** Definition: **^D O X V G S V ^T V 2 L** *V V V* = [−] *EB GS T* ⁺ ([−] [−]) ^V ^T V ^T ⁰ V ^B ^S *V V V* == [−] *EBQ GSQ TQ* W W μC 2 V V V μC V *I* 1 () (¹) *D* = = − • + *g* OX GS T DS OX EBQ 2L L *m V GS V V V V* =*^Q ^Q* Same as 3-term =^W μC 2 V V λ λI *I* 2 () *D* = = − • *g* OX GS T DQ 2L *o V* Same as 3-term*DS V V V V ^Q ^Q* = ^W μC 2 V V 1+λV *I V* 1 () () = = − • − • *D T g mb* OX GS T DS 2L *V V BS BS V V V V* = =*Q Q* W W μC V μC V *I V* 1 1 () () () [−] *g V* = • = − − − OX EBQ OX EBQ 1 1 *D T* 2 *mb BS* L L *V V* 2 *^Q V V BS BS V V V V* = = *Q Q*

This contains absolutely no more information than the set of small-signal model equations

Small Signal 4-terminal MOSFET Model Summary

Relative Magnitude of Small Signal MOS Parameters Consider:

$$
l_{d} = g_{m}V_{gs} + g_{mb}V_{bs} + g_{b}V_{ds}
$$

3 alternate equivalent expressions for g_m

$$
g_{\scriptscriptstyle m} = \frac{\mu C_{\scriptscriptstyle OX} W}{L} V_{\scriptscriptstyle \text{EBQ}} \qquad g_{\scriptscriptstyle m} = \sqrt{\frac{2\mu C_{\scriptscriptstyle OX} W}{L}} \sqrt{I_{\scriptscriptstyle DQ}} \qquad \qquad g_{\scriptscriptstyle m} = \frac{2I_{\scriptscriptstyle DQ}}{V_{\scriptscriptstyle \text{EBQ}}}
$$

Consider, as an example:

 μC_{OX} =100μA/V², λ=.01V⁻¹, γ = 0.4V^{0.5}, V_{EBQ}=1V, W/L=1, V_{BSQ}=0V

$$
i_{d} = g_{m}v_{gs} + g_{mb}v_{bs} + g_{o}v_{ds}
$$

\nrate equivalent expressions for g_{m}
\n
$$
j_{m} = \frac{\mu C_{ox}W}{L}V_{EBO} \t g_{m} = \sqrt{\frac{2\mu C_{ox}W}{L}}\sqrt{I_{DO}} \t g_{m} = \frac{2I_{bo}}{V_{EBO}}
$$

\n
$$
I_{ox} = 100\mu A/V^{2}, \lambda = .01V^{1}, \gamma = 0.4V^{0.5}, V_{EBO} = 1V, W/L = 1, V_{BSQ} = 0V
$$

\n
$$
I_{oo} \approx \frac{\mu C_{ox}W}{2L}V_{EBO}^{2} = \frac{10^{4}W}{2L}(1V)^{2} = 5E - 5
$$

\n
$$
g_{m} = \frac{\mu C_{ox}W}{L}V_{EBO} = 1E - 4
$$

\n
$$
g_{m} = \lambda I_{oo} = 5E - 7
$$

\n
$$
g_{m} = g_{m} \left(\frac{\gamma}{2\sqrt{\phi - V_{BSQ}}}\right) = .26g_{m}
$$

\nIn many circuits, $U_{BS} = 0$ as well

In this example

 \sim

$$
g_{\rm mb} < g_{\rm m}
$$

This relationship is common

In many circuits, $v_{\rm{BS}}$ =0 as well

- **Often the g^o term can be neglected in the small signal model because it is so small**
- **Be careful about neglecting g^o prior to obtaining a final expression**

Relative Magnitude of Small Signal BJT Parameters

Often the g^o term can be neglected in the small signal model because it is so small

Relative Magnitude of Small Signal Parameters

- **Often the g^o term can be neglected in the small signal model because it is so small**
- **Be careful about neglecting g^o prior to obtaining a final expression**

Small Signal Model Simplifications for the MOSFET and BJT

Often simplifications of the small signal model are adequate for a given application

These simplifications will be discussed next

Small Signal Model Simplifications

Small Signal Model Simplifications

Small Signal BJT Model Simplifications

Simplification that is often adequate

Gains for MOSFET and BJT Circuits BJT MOSFET

- Gains are identical in small-signal parameter domain !
- Gains vary linearly with small signal parameter g_m
- Power is often a key resource in the design of an integrated circuit
- In both circuits, power is proportional to I_{CQ} , I_{DQ} (if V_{SS} is fixed)

How does g_m vary with I_{DO} ?

$$
g_{\scriptscriptstyle m}=\sqrt{\frac{2\mu C_{_{OX}}W}{L}}\sqrt{I_{_{DQ}}}
$$

Varies with the square root of I_{DO}

$$
g_m = \frac{2I_{\text{DQ}}}{V_{\text{GSQ}} - V_{\text{T}}} = \frac{2I_{\text{DQ}}}{V_{\text{EBQ}}}
$$

Varies linearly with I_{DO}

$$
g_m = \frac{\mu C_{ox} W}{L} \big(V_{G S Q} - V_T \big)
$$

Doesn't vary with I_{DO}

How does g_m vary with I_{DO} ?

All of the above are true – but with qualification

 g_m is a function of more than one variable (I_{DO}) and how it varies depends upon how the remaining variables are constrained

Not convenient to have multiple dc power supplies V_{OUTO} very sensitive to V_{EE}

Single power supply Additional resistor and capacitor

Compare the small-signal equivalent circuits of these two structures Compare the small-signal voltage gain of these two structures

- Voltage sources V_{EE} and V_{CC} used for biasing
- Not convenient to have multiple dc power supplies
- V_{OUTO} very sensitive to V_{EE}
- ➢ Biasing is used to obtain the desired operating point of a circuit
- \triangleright Ideally the biasing circuit should not distract significantly from the basic operation of the circuit

Single power supply Additional resistor and capacitor Thevenin Equivalent of v_{IN} **& R_B is** v_{IN}

➢ Biasing is used to obtain the desired operating point of a circuit \triangleright Ideally the biasing circuit should not distract significantly from the basic operation of the circuit

Not convenient to have multiple dc power supplies V_{OUTQ} very sensitive to V_{EE}

Single power supply Additional resistor and capacitor

Compare the small-signal equivalent circuits of these two structures

Since Thevenin equivalent circuit in red circle is $V_{\overline{IN}}$, both circuits have same voltage gain

But the load placed on V_{IN} is different

Method of characterizing the amplifiers is needed to assess impact of difference

Small-Signal Analysis

- Graphical Interpretation
- MOSFET Model Extensions
- Biasing (a precursor)

\Rightarrow **Two-Port Amplifier Modeling**

This example serves as a precursor to amplifier characterization

Determine V_{OUTQ}, A_V, R_{IN} Assume β=100 Determine v_{out} and v_{out} ^{th} if v_{in} =.002sin(400t)

In the following slides we will analyze this circuit

Several different biasing circuits can be used $\rm (biasing\ components: \; C,\, R_{\rm B},\, V_{\rm CC} \;$ in this case, all disappear in small-signal gain circuit)

 D etermine V_{OUTQ}, A_v, R_{IN}

Determine V_{OUTQ}

dc equivalent circuit

$$
I_{\text{CQ}} = \beta I_{\text{BQ}} = 100 \left(\frac{12 \text{V} - 0.6 \text{V}}{500 \text{K}} \right) = 2.3 \text{mA}
$$

$$
V_{\text{OUTQ}} = 12V - I_{\text{CQ}}R_1 = 12V - 2.3mA \cdot 2K = 7.4V
$$

dc equivalent circuit

Determine the SS voltage gain (A_v)

Have seen this circuit before but will repeat for review purposes

 D etermine V_{OUTQ}, A_v, R_{IN}

- Here R_{IN} is defined to be the impedance facing V_{IN}
- Here any load is assumed to be absorbed into the one-port
- Later will consider how load is connected in defining R_{IN}

Determine R_{IN}

Determine v_{out} **and** v_{out} **^t) if** v_{in} **=.002sin(400t)**

This example identified several useful characteristics of amplifiers but a more formal method of characterization is needed!

Amplifier Characterization

- Two-Port Models
- Amplifier Parameters

Will assume amplifiers have two ports, one termed an input port and the other termed an output port

Two-Port and Three-Port Networks

- Each port characterized by a pair of nodes (terminals)
- Can consider any number of ports
- Can be linear or nonlinear but most interest here will be in linear n-ports
- Often one node is common for all ports
- Ports are externally excited, terminated, or interconnected to form useful circuits
- Often useful for decomposing portions of a larger circuit into subcircuits to provide additional insight into operation

Two-Port Representation of Amplifiers

- Two-port model representation of amplifiers useful for insight into operation and analysis
- Internal circuit structure of the two-port can be quite complicated but equivalent two-port model (when circuit is linear) is quite simple

Two-port representation of amplifiers

Amplifiers can be modeled as a linear two-port for small-signal operation

In terms of y-parameters

Other parameter sets could be used

- Amplifier often **unilateral** (signal propagates in only one direction: wlog y₁₂=0)
- One terminal is often common

Two-port representation of amplifiers

Unilateral amplifiers:

- Thevenin equivalent output port often more standard
- $\,$ R_{IN}, A_V, and R_{OUT} often used to characterize the two-port of amplifiers

Unilateral amplifier in terms of "amplifier" parameters

$$
R_{IN} = \frac{1}{y_{11}} \qquad A_V = -\frac{y_{21}}{y_{22}} \qquad R_{OUT} = \frac{1}{y_{22}}
$$

Amplifier input impedance, output impedance and gain are usually of interest Why?

- Can get gain without reconsidering details about components internal to the Amplifier !!!
	- Analysis more involved when not unilateral

Amplifier input impedance, output impedance and gain are usually of interest Why?

• Analysis more involved when not unilateral

Stay Safe and Stay Healthy !

End of Lecture 27